

TECHNICAL DATA

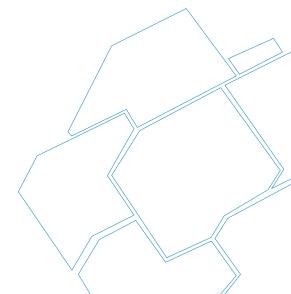
Divinycell HCP

THE HIGH PERFORMANCE SANDWICH CORE

Divinycell HCP grade meets the demand for a high performance, low density buoyancy material with excellent characteristics. It is widely used in submarines, subsea buoyancy units, ROVs, diving bells and impact protection structures. As a result of its excellent hydraulic compressive properties and closed cell structure, it has very low buoyancy loss and water absorption under long-term loading conditions. HCP stands for Hydraulic Crush Point and is defined as the point of pressure in Bar, where the material when

subjected to an increasing pressure of 1-2 Bar/sec has lost 5% of its initial volume. The design of subsea buoyancy applications is complex and consideration has to be given to the required buoyancy loss and updrift requirements over the expected lifetime and service conditions, with respect to long and short term hydraulic compressive creep, water absorption and hydraulic fatigue. Please contact Diab Technical Services for design proposal.

MECHANICAL PROPERTIES DIVINYCELL® HCP


Property	Test Procedure	Unit		HCP 30	HCP50	НСР70	НСР90	HCP100
Density	ISO 845	kg/m³	Nominal	200	250	310	380	410
Hydraulic Crush Point	ASTM D-2736 proc. A	Bar	Minimum	30	50	70	90	100
Communication Channella	ACTIAD 1631	MD-	Nominal	5.4	7.2	8.1	10.2	11.6
Compressive Strength ¹	ASTM D 1621	MPa	Minimum	4.5	6.1	7.0	9.0	10.0
Communication Modulus	ASTM D1621-B-73	MPa	Nominal	310	400	500	590	650
Compression Modulus ¹	A31MD1051-0-73		Minimum	265	350	390	490	540
Tanaila Ctuanathi	ACTM D 1C22	MDa	Nominal	7.1	9.2	11.0	12.6	13.5
Tensile Strength ¹	ASTM D 1623	MPa	Minimum	6.3	8.0	10.0	90 10.2 9.0 590 490	12.2
Shear Strength	ASTM C 273	MPa	Nominal	3.5	4.5	5.2	6.5	7.3
Silear Strength	ASTMC2/5	MPd	Minimum	3.2	3.9	4.2	490 12.6 11.5 6.5 6.0 147	6.5
Shear Modulus	ASTM C 273	MPa	Nominal	73	97	115	147	170
			Minimum	65	81	90	126	146
Shear Strain	ASTM C 273	%	Nominal	45	45	35	35	35

All values measured at +23°C

Nominal value is an average value of a mechanical property at a nominal density Minimum value is a minimum guaranteed mechanical property a material has independently of density

PRODUCT CHARACTERISTICS

- Excellent buoyancy performance
- High impact resistance
- Low water absorption
- Good insulation properties
- Thermoformable
- Superior damage tolerance
- Fast and easy to machine
- Good chemical resistance
- · High temperature resistance

Properties measured perpendicular to the plane

TECHNICAL CHARACTERISTICS DIVINYCELL® HCP

Туре	Buoyancy¹ (kg/m³)	Operational depth² (m)	Crush depth (m)		
HCP30	825	190	300		
HCP50	775	300	500		
HCP70	715	450	700		
HCP90	645	550	900		
HCP100	615	650	1000		

- 1. Buoyancy above is calculated at surface level and with nominal density. Please contact Diab for detailed analyse before selecting material.
- Operational depth above is calculated with a max 5% buoyancy loss over 10 years operational time.
 Depth shown are for guidance only and can be optimized for individual conditions. Always contact Diab for advice before selecting material.
 Buoyancy calculated in sea water (density 1025 kg/m3).

TECHNICAL CHARACTERISTICS

Characteristics ¹	Unit	НСР30	HCP50	НСР70	НСР90	HCP100	Test method
Density range	kg/m³	180-230	230-290	295-340	350-415	390-455	iS0 845
Closed cells	%	>99	>99	>99	>99	>99	-
Thermal conductivity ²	W/(m-K)	0.049	0.051	0.057	0.058	0.060	EN 12667
Coeff, linear heat expansion	x10 ⁻⁶ /°C	37	37	37	37	37	ASTM D 696
Continuous temp range	°C	-200/+80	-200/+80	-200 to +80	-200/+80	-200/+80	-
Max process temp	°C	+90	+90	+90	+90	+90	-
Dissipation factor	-	0.0015	0.0020	0.0024	0.0030	0.0034	ASTM D 2520

- 1. Typical values
- 2. Thermal conductivity at +10°C

Operating temperature is typically -200°C to +80°C. Normally Divinycell HCP can be processed up to +90°C without dimensional changes.

Maximum processing temperature is dependent on time, pressure and process conditions. Therefore, users are advised to contact Diab Technical Services to confirm that Divinycell HCP is compatible with their particular processing parameters.

PHYSICAL CHARACTERISTICS

Format		Unit	НСР30	НСР50	НСР70	НСР90	HCP100
Plain sheets	Length	mm	1730	1640	1410	1340	1310
	Width	mm	850	800	700	660	640
	Thickness	mm	62	54	31	27	23

Can be bonded to larger dimensions upon request.

Disclaimer:

This data sheet may be subject to revision and changes due to development and changes of the material. The data is derived from tests and experience. If not stated as minimum values, the data is average data and should be treated as such. Calculations should be verified by actual tests. The data is furnished without liability for the company and does not constitute a warranty or representation in respect of the material or its use. The company reserves the right to release new data sheets in replacement.

All content in this publication is protected by international copyright laws. Copyright © Diab June 2025.

Diab Group